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allowing the flies free rein for mating, other things being
equal, would eventually result in pure cactus breeding
626 flies.

Positive assortative mating, on the other hand, by
definition, occurs when the frequency of homogamic
matings (matings between similiar individuals) is sig­
nificantly greater than that of heterogamic matings
(matings between dissimilar individuals). If sexually
mature individuals can meet, positive assortative mat­
ing must exist in order for ecological types to diverge.
At a moderate level, assortative mating may tend to
preserve intrapopulation diversity. If increased to its
extreme level, it isolates sympatric populations. No
evidence for this was found in our tests.

To summarize, D. pegasa maleswere capable ofdis­
tinguishing between females that were reared on two
different media. However, their subsequent behavior
was such as to lead to the elimination of variability
rather than to the fragmentation of the population.
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The processes of sex determination in reptiles fall
into two broad categories: genotypic and environmen­
tal (Bull, 1980, 1983). Genotypic sex determination
(GSD) includes familiar heterogametic mechanisms
(XX:XY and ZZ:ZW) and less common arrangements
(XXX:XXY, ZZZ:ZZW, ZZZ:ZWW, pseudo XO,
homogamety, and perhaps others) (Olmo, 1986).
Known environmental sex determination (ESD) mech­
anisms include hydric (Gutzke and Paukstis, 1983;
Paukstis et al., 1984) and thermal (Bull, 1980, 1983;
Pieau, 1985) effects on gonadal differentiation of de­
veloping embryos. Males generally are produced at in­
termediate temperatures (e.g., 25"C) in turtles and at

high temperatures (e.g., 31"C) in lizards and crocodil­
ians. However, several turtles (Yntema, 1976; Vogt et
al., 1982; Schwarzkopf and Brooks, 1985), one lizard
(Tokunaga, 1985), and several crocodiles of the genus
Crocodylus (Deeming and Ferguson, 1988) produce fe­
male hatchlings at both high and low (e.g., 21"C) in­
cubation temperatures. These three general patterns of
temperature effects on gonadal differentiation have been
described by Bull (1980) as: Type A-females pro­
duced at intermediate temperatures, males produced
at high temperatures; Type B-females produced at
high temperatures, males at intermediate tempera­
tures; and Type C-females produced at low and high
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TABLE 1. Relationship between sexual dimorphism in adult body size and sex-determining mechanisms in
turtles and lizards after potential phylogenetic constraints have been removed (see text). Information on sexual
dimorphism and sex determination was collected from numerous sources in the literature and is presented in
Figures 1 and 2. The data in this table were generated by subjecting Figures 1 and 2 to Ridley's method of
phylogenetic analysis (Ridley, 1983). Where information on a given species indicated intraspecific variation in
patterns of sexual dimorphism (four chelonians and ten saurians), the species was counted in the dimorphism
category favorable to the hypothesis (e.g., if a lizard with GSD showed no dimorphism in some populations
and large-female sexual dimorphism in others, the species was counted in support of the hypothesis). This
methodology promotes a conservative test. Also, four lizard species were excluded from this analysis because
they are strictly viviparous, a condition which apparently necessitates GSD (Bull, 1980) and which, therefore,
would confound the analysis. Data for turtles and for lizards were analyzed with separate G-tests, (Sokal and
Rohlf, 1981). Despite favorable changes, the null hypothesis (i.e., values do not differ from random) cannot be
rejected for either turtles or lizards.

p
Pattern of sexual dimorphism ESD Pattern of sexual dimorphism GSD G d[=l

Chelonians
5> !i1;5=!i1 5 5> !i1 2 0.80 0.37
5<!i1 5 5 < !i1;5=!i1 5

Saurians
5> !i1 2 5> !i1;5=!i1 10 1.41 0.24
5 < !i1;5=!i1 4 5<!i1 7

temperatures, males at intermediate temperatures.
These various mechanisms and patterns ofESD occur
across broad taxonomical levels within the class Rep­
tilia (Bull, 1980, 1983; Olmo, 1986; Deeming and Fer­
guson, 1988) and may occur even within the same
family or genus (e.g., Ewert and Nelson, 1987).

The variety of sex-determining mechanisms in rep­
tiles has resulted in considerable interest in this phe­
nomenon, yet a sufficient explanation for the occur­
rence ofthese various mechanisms is lacking (Bull and
Chamov, 1989). Chamov and Bull (1977) provided an
important model to address this problem by delimiting
circumstances under which selection should favor ESD
over GSD: (1) the animals must inhabit a patchy en­
vironment wherein offspring in certain patches have
different lifetime fitness than offspring in other patches,
(2) the patchiness must influence male fitness differ­
ently than female fitness such that some patches are
better for males than for females and vice versa, (3)
the offspring cannot choose the patch type and the
parents cannot preferentially put offspring of one ge­
notype into other patches, and (4) mating takes place
among individuals reared in different patches. Under
these conditions, ESD theoretically is favored by se­
lection over GSD because offspring whose sex is de­
termined at conception often would be of low fitness
in a given patch.

Researchers seeking to explain the adaptive signifi­
cance ofESD in reptiles have concentrated on search­
ing for fitness traits that correlate with incubation tem­
perature (representing the "patch" in the Charnov-Bull
model) and offspring sex. One possible interpretation
ofthe Charnov-Bull model is that post-hatchinggrowth
may be a potential candidate for a fitness trait in rep­
tiles with ESD, because it may correlate with both in­
cubation temperature and offspring sex. According to
this sexual dimorphism hypothesis, if the benefits of
adult body size differ between the sexes, the sex that

benefits most from being large should be produced at
the particular incubation temperature (cool, warm, or
hot, as it may be) that will yield a larger adult. Thus,
one possible test of the adaptive significance of sex­
determining mechanisms in reptiles is to demonstrate
that the pattern of sexual dimorphism in adult body
size is correlated with the occurrence of either ESD or
GSD in a given taxon. An additional test would be to
demonstrate that the type of ESD is related to the
pattern of sexual dimorphism in adult body size in a
given taxon (Head et al., 1987).

Are the fitness effects of ESD manifested in sexual
dimorphism in adult body size in reptiles? Snakes and
the tuatara are not known to exhibit ESD (Bull, 1980,
1983; M. B. Thompson, pers, comm.) and amphis­
baenids have yet to be studied, thus these taxa cannot
be used to test the sexual dimorphism hypothesis.
Crocodilians, of which all eight species examined to
date possess ESD (Yamakoshi et al., 1987; Deeming
and Ferguson, 1988), all have large-male sexual di­
morphism (Lang, 1987). The evolutionarily conserved
occurrence of ESD and pattern of sexual dimorphism
in adult body size within the group imply potential
phylogenetic constraints and thereby disallow appli­
cation of the first of the two tests of the sexual dimor­
phism hypothesis described above. For the second test,
five of the eight species show the Type A pattern of
ESD, while the remaining three species show the Type
C pattern of ESD. Thus, contrary to the sexual di­
morphism hypothesis, the type of ESD (A, B, or C) in
crocodilians is unrelated to the pattern of sexual di­
morphism in adult body size.

Turtles and lizards, in contrast to the crocodilians,
exhibit variation in sex-determining mechanisms (Bull,
1980, 1983; Olmo, 1986) and sexual dimorphism (Ber­
ry and Shine, 1980; Fitch, 1981), thus providing a
better opportunity for tests of the sexual dimorphism
hypothesis. For the first test of the sexual dimorphism
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FIG. 1. Phylogenetic tree for turtles showing the sex-determining mechanisms and patterns of sexual di­
morphism in adult body size. E = ESD, H = homomorphic sex chromosomes, XY = male heterogamety, z:w
= female heterogamety. The equality and inequality signs indicate body size of adult males in relation to body
size of adult females.

hypothesis, data for turtles and lizards (Figs. I, 2, re­
spectively) were analyzed with G-tests (Sokal and Rohlf,
1981) after taking into account possible phylogenetic
constraints (Table 1). The approximate minimum
number ofphylogenetically independent combinations
ofsexual dimorphism and sex-determining mechanism
was determined with Ridley's method (Ridley, 1983;
see Swofford and Maddison [1987] and Coddington

[1988] for discussion of this technique). Phylogenetic
relationships were determined from published phylog­
enies for turtles (Gaffney and Meylan, 1988) and lizards
(Lutz and Mayer, 1985; Guyer and Savage, 1986; Kluge,
1987; Estes et aI., 1988; Etheridge and de Queiroz,
1988). The relationships between sex-determining
mechanisms and sexual dimorphism in adult body size
for both turtles and lizards are inconsistent with pre-
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FIG. 2. Phylogenetic tree for lizards showing the sex-determining mechanisms and patterns of sexual di­
morphism in adult body size. E = ESD, H = homomorphic sex chromosomes, XY and XXV = forms of male
heterogamety, ZW and ZZW = forms of female heterogamety. The equality and inequality signs indicate body
size of adult males in relation to body size of adult females. The taxonomic affinities of three lacertid lizards
(Meroles cuneirostris, Lacerta monticola, and Eremias arguta) could not be determined precisely, although
information on their sex-determining mechanisms (H, Hand ZW, respectively) and patterns of sexual dimor­
phism in adult body size (>, <, and >, respectively) were used with the rest of the information for lizards in
this figure to generate data for Table 1, using Ridley's method ofphylogenetic analysis (Ridley, 1983). Although
information for Elgaria multicarinata was used in this figure and in Table 1, the classification of this species as
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dictions of the sexual dimorphism hypothesis. Only 6
of the II assemblages (i.e., phylogenetically indepen­
dent combinations) of turtles with ESD exhibit a pat­
tern of large-male sexual dimorphism. Only three of
five assemblages of lizards with ESD also show large­
female sexual dimorphism. Although there appears to
be a correlation between pattern ofsexual dimorphism
and presence or absence of GSD, the relationship is
not statistically significant (Table I).

For the second test, data for the type of ESD and
the pattern of sexual dimorphism in adult body size
for turtles and lizards were tabulated (Table 2). These
data also do not support the sexual dimorphism hy­
pothesis because there is no relationship between the
type ofESD and pattern ofsexual dimorphism in adult
body size. For example, four assemblages of turtles
with Type B ESD have large-female sexual dimor­
phism, three have large-male sexual dimorphism, and
two show no sexual dimorphism at all. One could ar­
gue, however, that many species currently classified as
showing a Type A or B pattern of ESD have not been
tested specifically for the presence or absence ofa lower
threshold of sex determination that, if present, would
cause the species to be reclassified as Type C. Even if
the test is restricted to analysis ofType C species (i.e.,
species whose classification is unambiguous), the sex­
ual dimorphism hypothesis remains unsupported (col­
umn C for Chelonians in Table 2).

Potential problems with tests of the sexual dimor­
phism hypothesis do exist. First, if conditions of the
Charnov-Bull model are violated substantially (and
there is no evidence that this is the case), then the first
test of the sexual dimorphism hypothesis could be in­
validated. However, these violations would leave the
second test unaffected. Second, the phylogenetic rela­
tionships ofthe various reptilian species presented here
(Figs. I, 2) are working hypotheses based on the data
that currently are available. These phylogenetic hy­
potheses may undergo future changes and, consequent­
ly, the numbers of assemblages present in the cells of
Tables I and 2 may change. Although numbers in the
cells may change, as would the statistical values, no
cell currently containing at least one assemblage ever
would be reduced to zero. Thus, any currently nonemp­
ty cell that is unfavorable to the sexual dimorphism
hypothesis always would remain so. Third, any species
that does not conform to the sexual dimorphism hy­
pothesis may so deviate because strong selection favors
a particular pattern of sexual dimorphism that is un­
related to the type of ESD in that species. In this sce­
nario, evolution of a different sex-determining mech­
anism or type ofESD lagsbehind evolution ofa different
pattern of sexual dimorphism. This sort of ad hoc ar­
gument would undermine the generality of the sexual
dimorphism hypothesis. Finally, because sexual di­
morphism can vary intraspecifically among popula­
tions (see text ofTable I), certain species may be mis­
categorized in this analysis, although that seems
unlikely.

Based on the limited number of reptile species ex­
amined to date, the sexual dimorphism hypothesis

TABLE 2. Relationship between sexual dimorphism
in adult body size and type (A, B, or C ofBull [1980])
of environmental sex determination in turtles and liz­
ards after potential phylogenetic constraints have been
removed (see text). The number of assemblages for
each taxon differ from those in Table I because ad­
ditional assemblages were created when classifying spe­
cies by type of ESD.

Pattern of sexual
Chelonians Sauriaos

dimorphism A B C A B C

~>\1 0 3 I 2 0 0
~=\1 0 2 0 I 0 0
~ < \1 0 4 2 2 0 I

appears unable to explain the predictions of the Char­
nov-Bull model (Charnov and Bull, 1977). Our results
suggest that if ESD is adaptive in reptiles, then an
explanation for its occurrence might be found in or­
ganisms with GSD (Janzen and Paukstis, 1988) or in
alternative traits that may correlate with offspring sex
and incubation temperature (e.g., length ofincubation
period [Packard and Packard, 1988], post-hatching
growth rates or size at various life stages [Joanen et al.,
1987]). Gutzke and Crews (1988), for example, recently
have provided evidence for the current adaptive sig­
nificance of ESD in leopard geckos (Eublepharis ma­
cularius). They found that female leopard geckos pro­
duced at warm incubation temperatures apparently are
functionally sterile, while females produced at cool in­
cubation temperatures exhibit sexual receptivity when
courted by males. Thus, although the sexual dimor­
phism hypothesis is unsupported at this time, the news
is encouraging for researchers interested in this area.
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