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finding the correlation between Vand U
—V where U=log X, V= log Y. This
is given by pyu-v= (poy— ovll{o
+ oyt — 2poyoy} where p = correlation of
U, V and o!,0? refer to their variances.
When p =0 this reduces to —av/(oy’
+ op?). Why did Atchley et al. take such
trouble (and so much computer time) es-
tablishing results about X and Y empiri-
cally when it can be done analytically in
terms of the logarithms? Why is the cor-
relation between X and Y more meaning-
ful than that between log X and log Y?

Atchley et al. made great play out of
the fact that pyyy is large and negative
if X and Y are independent (the same is
true in terms of logs). Yet biologists use
ratios for measurements with high posi-
tive correlations, not zero correlations,
this being the whole point of using ratios.
If p is positive and high and if oy =0y
(usually true on a log scale) then pv. v-v
will be low, for then

pvu-v=(p— {2 - 2p}
= {(1 - p¥2}.

Thus for p = 0.8, pyy - v = —0.32 where-
asforp = 0, pyy - v = —0.71. Note that for
p=~-08, pyy-v=—095!

3. A function of a set of linear measure-
ments X,, ..., Xp can only be regarded
as measuring shape if it is invariant when
all of the X's are changed in the same
proportion, This leads one to ratios or to
some extension of the same idea based
on logarithms (e.g., Penrose’s [1954] size
and shape measures based on the loga-

rithms of the variables). It is a common

fallacy to assume that this condition of
invariance implies that shape must be
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statistically independent of size—this is
not so. The condition is a mathematical
one referring to a single set of measure-
ments,

4. If a principal component analysis is
based on variables Uy, . .., U, (which are
the logarithms of X, . . . , X;), then the
result will certainly differ from a princi-
pal component analysis based on U,
= Uy, Uy, ..., Uy or any other linear
transformation of the U’s. The difference
is quite predictable and it can make more
sense to use a linear transformation rath-
er than the U’s themselves. For example,
with two variables it is often useful to
transform to U, + Uy and U, — Uy, i.e,, to
use log(X,Xs) and log(X,/X,). Since the
correlation between these will be low
(provided U, and U, have high positive
correlation) it will often be possible to
analyze them separately. Penrose’s meth-
od of size and shape (on a log scale) ef-
fectively uses an orthogonal linear trans-
formation in which (U, +. . . + Ul is
the first transformed variable. Shape dif-
ferences are then based on the other
transformed variables.
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On the Use of Ratios in Growth Studies

Ratios have a long history of use among
biologists, and the practice is unlikely to
diminish markedly in the foreseeable fu-
ture, There has been, however, recentrec-
ognition of certain theoretical (Atchley,
et al., 1976) and practical (Blackith and
Reyment, 1971) liabilities that may de-

tract from the general usefulness of ra-
tios. The purpose of this contribution is
to draw attention to several beneficial
properties of ratios discovered in bivar-
jate and multivariate studies of growth
series of living and fossil reptiles (Dod-
son 1975a, b, ¢; 1976). A common feature
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F1G. 1.—Plot of the coefficient of variubility cal-
culated on ratio data (V) as a function of allometric
coefficient (a), combined skull and skeletal data of
Alligator (n = 52, p = 66), The greater the degree
uf‘ullumvtry. the greater the coelficient so ealeulat-
ed,

of these studies is the great size span of
the specimens, ranging from a factor of

three in the Seeloporus study (Dodson,
1975b) to a factor ol 18 in the Alligator
study (Dodson, 1975a). In each of the ex-
amples discussed below, ratios were
used only after equivalent procedures
had been executed with the raw data. In
this manner the effects of ratios could be
carefully judged.

The first case involves caleulation of
the coeflicient of variation (V) of a growth
series. In his elassic biometric study of
the Permian amphibian, Diplocaulus,
Olson (1951) discovered that calculation
of V for a growth series gave meaningless
results; the inflated values of V clearly
did not reflect typical within-population
variability. When he converted his data
to ratios, values of V remained unaceept-
ably high. Allometry is the key to this
puzzle: ratios reduced specimens to unit
length but do not eliminate changes of
shape. If no change of shape (isometry)
obtains during growth, size is eliminated
by ratios and V does approximate the re-
quired measure ol variability. But the
greater the degree of allometry, the more
Vis inflated by the effect of size alone.
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F1G. 2—Plot of factor loadings of the first prin-
cipal component as a function of the allometric
coefficient (a); ratio data of Alligater skull (n = 52;
p=27.

A plot of V as a function of the allometric
coefficient (¢) vields u V-shaped plot with
minimum values (the sought-afler mea-
sure of variability) centered about the
isometric coefficient of 1.0 (Fig. 1), The
tight envelope of points on the ascending
limbs of the plot represent characters
with similar levels of variability; only
those points which lie above the enve-
lope are of genuinely higher variability.
This provides in effect a eriterion of sub-
traction for the allometric effect. Because
it facilitates work with growth series rath-
er than just static adult samples, the coef-
ficient calculated with ratio data has been
named the coelficient of dynamic vari-
ability, V4 (Dodson, 19754, b).

A frequently found feature in prineipal
components analyses ol growth series is
that the first principal component ac-
counts for a very high proportion of the
total variance, leaving a small and some-
times statistically insignificant residual to
interpret. When the first component has
positive loadings of approximately equal
value, it is usually interpreted us the size
component (Blackith and Reyment, 1971).


Mireya Viloria
Cuadro de Texto


Mireya Viloria
Cuadro de Texto


Mireya Viloria
Cuadro de Texto


Mireya Viloria
Cuadro de Texto



64

SYSTEMATIC ZOOLOCY

TabLE 1. FIRST PRINCIPAL COMPONENT AND
ALLOMETRIC COEFFICIENTS OF ALLIGATOR SKULL
(n =52, p=27)

Factor Factor
loading loading Allometric
Variable (Raw data) (Ratio data coeflicient
1 09 s 1.07
2 09 -.15 1.01
3 09 30 H8
4 09 13 99
5 99 39 06
6 0o o -—
T 09 —.81 L10
8 09 -.25 1.02
9 08 87 69
10 08 93 60
11 89 -37 1.07
12 Bl A1 1oL
13 0o 64 8l
14 09 81 67
15 87 38 B8
16 09 .69 90
17 09 -81 1.32
18 ] .08 08
19 06 B2 a7
20 09 -.58 L10
21 B9 19 09
22 B8 -.30 1.07
23 09 -.39 1.04
24 Rl 42 1.04
25 00 -48 1.08
26 o8 26 .08
27 06 94 b4

The size component in the study of Al-
ligator skulls (number of specimens [n]
52: number of variables [p] 27; Dodson,
1975a) accounts for 97.9% of the total
variance (the next three components ac-
count for 0.8%, 0.6% and 0.3% respec-

tively). When ratios are used instead of

raw data, the value of the first component
plummets to 32.0% (while the next three
components increase to 19.6%, 11.6%
and 8.9% respectively). The first compo-
nent ceases to be a size component in the
usual sense because negative signs crop
out and the factor loadings assume un-
equal value, However, size is reconsti-
tuted in an interesting way, for now the
first component contrasts positively allo-
metric with negatively allometric vari-
ables (Table 1). That it does so in an or-
derly fashion is shown by a plot of factor
loadings as u function of allometric coef-
ficients (Fig. 2).
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tst Coordinate Axiw
F1G. 3.—Principal coordinates analysis (p = 24)
(raw data) of growth series of skulls of Alligator
{n = 17) (O); Crocodilus (n = 13) (@); and Gavialis
(n = 5) (x).

Another example of the utility of ratios
in a multivariate study stems from a prin-
cipal coordinates analysis (p = 24) with
growth series of skulls from three species
of crocodilians: Alligator mississipiensis
(n = 17); Crocodilus acutus (n = 13); and
Gavialis gangeticus (n = 5). Although
these crocodilians differ so broadly in
their morphology that they are immedi-
ately distinguishable one from another,
the principal coordinates analysis of the
raw data failed to bring about any signif-
icant separation among the three (Fig. 3).
However, when ratio data are substitut-
ed, an excellent separation oceurs (Fig,
4). The reason for this is that the variance
due to size within the Alligator series is
so great that juveniles manifest a greater
metric resemblance to juvenile Crocodi-
{us than they do to adults of their own
kind. Boyee (1964) experienced similar
difficulty in aligning skulls of juvenile
pongids with their respective adults, The
use of ratios reduces the within-group
variance to a sulliciently low level that
between-group variance predominates,
resulting in the required separation.

DISCUSSION

Ratios are useful in studies of growth
series and in other biometrical appliea-
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tions. In view of certain undesirable
properties, however, the continued use
of ratios has been questioned. Atchley et
al. (1976) presented an important critique
of ratios that must be considered careful-
ly. Their study, which they described as
“empirical,” was in fact based on analysis
of computer-generated pseudo-random
vectors from a parametric multivariate
normal distribution, the properties of
which simply are not relevant to biolog-
ically meaningful tests of ratios, They
concluded, after executing many hours of
computer runs, that ratios shift the distri-
bution ol normal variables towards a
right-skewed leptokurtic configuration;
that ratios do not remove the effect of size
from the data set; that spurious correla-
tion among variables may be induced
where none existed before; that ratios in-
flate the overall dependency ol the cor-
relation matrix and inflate the eigenvalue
of the first principal component; and that
in multivariate studies interpretations
based on ratio data differ from those
based on raw data.

The comments that follow derive from
experience based on real biological data
sets, in which variance due to size was a
problem; that is, results of procedures
executed on the raw data were unsatis-
factory, requiring further manipulation of
data to obtain comprehensible results.
While other procedures could have been
chosen, ratios were carefully tested and
proved to be useful.

That ratios change the shape of distri-
butions is significant, but how important
this is to the practicing biologist is un-
certain. Tests for normality are rarvely car-
ried out as a routine procedure; indeed
the relevance of the normal distribution
to the empirical world with which the
biologist deals on o daily busis is doubt-
ful, Reyment (1971) demonstrated that
distributions which pass tests of bivariate
normality may fail tests of multivariate
normality, and that a transformation that
hus the effect of eliminating kurtosis may
simultaneously increase skewness. Rey-
ment (1971: 367) concluded: “Although
the desire to make a set of data multivar-
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Fic. 4.—Principal coordinates anulysis (p = 24)
(ratios) of growth series of skulls of Alligator
(n = 17) (O); Crocodilus (n = 13) (®); and Gavialis
(n=5)(x).

iate normal by means of some transfor-
mation or other may make good sense
from the purely statistical point of view,
there is some doubt as to the biologic ra-
tionale of such a step, as there can be no
hiding the fact that this may tend to ob-
scure the relationships the investigator
wishes to probe.” Fortunately, many sta-
tistical procedures (including general-
ized distance) are robust to departures
from normality. It is the practical matter
of robustness (as of yet inadequately ex-
plored), rather than theoretical niceties of
distribution, with which the biologist is
properly concerned.

That ratios do not remove the effect of
size from the data set is so widely appre-
ciated (e.g., Huxley, 1932; Gould, 1966,
1971; Corruceini, 1975, ete.) as to deserve
no further discussion. The issue of spu-
rious correlation is a more challenging
point, However, the situation of zero cor-
relation between numerator and denom-
inator variables to which the authors al-
luded is biologically irrelevant for
continuous characters in growth studies;
because all characters increase in abso-
lute size, they are all positively intercor-
related (in the study of Alligator, the low-
est correlation coeflficient in the 27 x 27
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TABLE 2. SAMPLE CORRELATION MATRICES OF
Alligator SKULL.'

Log raw data
VAR 1 1.000
g 987 1000
3 096 899 1,000
4 094 095 966 1000
5 988 098 993 998 1.000
VAR 1 2 3 4 5
Log ratios
VAR 1 1000
2 592 1000
3 411 797 1.000
4 315 398 568 1.000
5 050 154 508 842 1.000
VAR 1 2 3 4 5
I Note the sharp reduction of levels of correlation when ratios are

used, (Basal skull length [var. 8] is the standard variable,)

matrix for cranial raw data was .890).
When the effect of size is great, ratios can
decrease the general level of correlation
(Table 2); indeed, negative correlations
may appear, indicating that while all
structures increase inabsolute size, some
structures become relatively larger while
others become relatively smaller.

Thus, using ratio data for Alligator, for
the relationship snout length (a = 1.10)
versus orbit length (a = .69) r= —.804;
and for width of the upper temporal
opening (¢ = 1.32) versus width of the fo-
ramen magnum (a = .64), r = —.629. The
unconditional assertion by Atchley et al.
(1976) concerning inflation of correlation
by ratios, in spite of indisputable evi-
dence to the contrary (Corruceini’s [1975]
statement on the subject was labeled
“completely false”), indicates that the au-
thors fail to appreciate intuitively what
the taking of ratios means: literally the
reduction of all specimens to the same
unit length. Size is not eliminated, be-
cause allometry remains. The desirable
effect achieved by ratios is the emphasis
on the growth of structures relative to one
another, of which the general lowering of
correlations and the appearance of nega-
tive correlations is an expression,

Atchley et al. (1976) correctly estab-
lished that in a multivariate analysis the
use of ratios may lead to a substantially
dilferent interpretation from one based

on raw data, This insight is not novel; the
factor analyst has at his disposal a wide
range of options as to types of rotation
and numbers of axes to abstract, each of
which yields a unique result. The issue
is not which solution is true and which
others are false, but rather which provide
useful biological insight (Gould, 1967).
In the principal components analysis dis-
cussed above (Table 1; Fig. 2), the first
component of the ratio analysis clearly
provided useful, independently verified
information. Once again, usefulness is
the sole eriterion.

CONCLUSIONS

Ratios doubtlessly have been used un-
wisely in metric studies for many years,
During the past decade our knowledge of
the significance of ratios, as well as their
linbilities, has improved considerably.
Atchley et al. (1976) have made an im-
portant contribution on the theoretical
properties of ratios, but precisely be-
cause of their lack of empiricism, they

failed to demonstrate the applicability of

their indings to the real biological world,
They unfortunately chose to base their
analyses on pseudo-random vectors from
a multivariate normal, random distribu-
tion, and to assume non-correlation he-
tween numerator and denominator vari-
ables in ratios, situations most unlikely to
be encountered in nature. 1 demonstrate
from studies of real data sets that ratios
have desirable properties in both bivar-
iate and multivariate studies of continu-

ously distributed growth data. In each of

the studies described, ratios were used
advisedly, only after equivalent opera-
tions with raw data had been executed;
and similar caution is to be recommend-
ed to all investigators. The desirable
properties of ratios reported herein oc-
curred in growth series in which the larg-
estmembers were between 3and 18 times
greater than the smallest. As the benefi-
cial effects of ratios were more evident al
the upper end of the spectrum than at the
lower, there probably exists a limit (yel
to be determined—probably in the range
of 1.5 to 2.0) helow which the deleterious

effects outlined by Atchley et al. out-
weigh the benefits presented herein. [
believe, however, that careful biometri-
cians will decide that, to paraphase Mark
Twain, “rumors of demise of ratios are
grossly exaggerated.”
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Some Comments on the Use of Ratios

Atchley et al. (1976) have recently
called attention to some of the statistical
consequences of using ratio data. Their
empirical results should provide ample
warning for biologists who might consid-
er converting raw data to ratios. How-
ever, while Atchley et al, presented ex-
amples which are of heuristic value
because of their relative simplicity, sev-
cral of these same examples are poten-
tially misleading to readers looking for
correlations hetween the empirical find-
ings and common usages of ratios in bi-
ology.

In discussing the utility of ratios for the
control of size differences, Atchley et al.
proposed the situation in which one vari-
able (X)) is converted to a ratio (Y = X,/

Xa), where the denominator variable (X,
= Z) is uncorrelated with X, (p,; = 0) but
cqual in terms of coefficients of variation
(8, = 8y). They demonstrated that under
such conditions the ratio Y is correlated
with the variable Z (ryz = —0.71); appar-
ently, in this situation, the use of ratios
does not eliminate size from the raw vari-
able X, (if X, is considered to be a vector
which measures size). However, the orig-
inal assumption of zero correlation (p,g
= () indicates that X,, by itself, displays
exclusively non-size variation; accord-
ingly, there would be little point in scal-
ing the data to correct for size. Of course,
nothing prevents the careless researcher
from overlooking the independence of
the two variables, utilizing a ratio to cor-





